

Tandy® I 02 Software:
© 1985 Microsoft Incorporated.
All Rights Reserved.
The software in the Tandy 102 microcomputer is
retained in a read-only memory (ROM) format.
All portions of this software, whether in the ROM
format or other source code form format, and the
ROM circuitry, are copyrighted and are the pro­
prietary and trade secret information of Tandy
Corporation and Microsoft. Use, reproduction or
publication of any portion of this material without
the prior written authorization by Tandy
Corporation is strictly prohibited.

Tandy® 102 Applications and
BASIC Reference Guide
© 1985 Tandy Corporation
All Rights Reserved.
Reproduction or use, without express written
permission from Tandy Corporation and/ or its
licensor, of any portion of this manual is
prohibited. While reasonable efforts have been
taken in the preparation of this manual to assure
its accuracy, Tandy Corporation assumes no
liability resulting from any errors or omissions in
this manual, or from the use of the information
contained herein.

Contents

Part 1/
Applications Reference Guide

1/ Tandy 102 4
2/ SCHEDL/ ADDRSS 5
3/ TEXT 6
4/ TELCOM 8

Part 2/
BASIC Reference Guide

5 I BASIC Operation 12
6/ BASIC Data 14
7 / BASIC Input/Output 20
8/ BASIC Files 24
9/ BASIC Program Flow 29

10/ BASIC Keywords 32
11 / BASIC Machine-Code Calls . 7 5
12/ BASIC Variable Storage 77
13/ BASIC Codes 82
14/ BASIC Error Codes 94
15/ BASIC Sample Programs ... 95

PART 1/
Applications Reference Guide

This part is a quick reference guide to
the information presented in the
Tandy 102 Owner's Manual.

3

1/ Tandy 102

(PRINT)

(LABEL)

Turns on and off the
numeric keypad.

Prints the display.

Turns on and off the
function-key display.

(SHI FT l(BREAK l Stops the current operation.

To set the day, date, and time: Enter BASIC and
use the DAY$, DATE$,and TIME$, commands.
(See "BASIC Keywords" in Part 2 of this guide.)

To rename or kill a file: Enter BASIC and use the
NAME and KILL commands. (See "BASIC
Keywords" in Part 2 of this guide.)

4

2/ SCHEDLIADDRSS

Finds records from
NOTE.DO (SCHEDL) or
ADRS.DO (ADDRSS) and
lists them on the display.

Finds records from
NOTE.DO (SCHEDL) or
ADRS.DO (ADDRSS) and
prints them on the printer.

Returns to the Main Menu.

5

3/ Text

TEXT Cursor Movement

G Moves right 1 character.

G Moves left 1 character.

CD Moves up 1 character .

CD Moves down 1 character.

(SHIFT)E) Moves to the next word.

(SHIFT)G Moves to the previous word.

(CTRLJG Moves to the right end of
the line.

(CTRL lG Moves to the left end of the
line.

(SHIFT lCD Moves to the top of the
display.

(SHIFT)(D Moves to the bottom of the
display.

(CTRL)CD Moves to the top of the file.

(CTRL)QJ Moves to the bottom of the
file.

6

TEXT Editing

(SHIFT l(DEL l

(BKSPJ

(SH I FT l(PR I NT l

(PASTE)

Deletes a character.

Backspaces and erases.

Prints a text file.

Pastes the contents of the
paste buff er.

Finds text.

Loads a text file from
cassette tape, RS-232C or
modem.

Saves a text file on cassette
tape, line printer, RS-232C
or modem.

Copies text into the paste
buffer.

Cuts text into the paste
buffer.

Selects text to cut or copy
into the paste buff er. .

Returns to the Main Menu.

7

4/ TELCOM

TELCOM Interactiiie Mode

cm Finds and autodials a
number stored in
ADRS.DO. (The number
must follow a colon (:).)

Autodials the number that
you type and enter.

Enters or displays
TELCOM's parameters.

Enters the terminal mode.

Returns to the Tandy 102
Main Menu.

8

TELCOM 'Ierminal Mode

cm Displays the previous
screen.

cw Saves all transmitted
information into a text file.

cm Sends the information
stored in a text file.

CH) Switches between the full-
duplex and half-duplex echo
modes .

~ Prints all transmitted
information on the printer.

(EID Disconnects from the
terminal mode and returns
to the interactive mode.

9

Part 2/
BASIC Reference Guide

This part is a reference to Tandy 102
BASIC. It assumes you already know
how to program in BASIC and need
to find out how BASIC is
implemented on the Tandy 102.

To learn how to program in BASIC,
we suggest the following book:

The TRS-80 Model 100 Portable
Computer, David A. Lien,
CompuSoft Publishing, 1983.

11

5/ BASIC Operation

BASIC Modes

BASIC lets you operate it in the immediate mode,
program execution mode, and edit mode:

To use the immediate mode: Type and enter
any statement, for example, NEW [ENTER l.
This causes the statement to immediately
execute .

To use the execution mode: Type and enter the
RUN statement or press @. This causes the
current BASIC program to run .

To use the edit mode: Type and enter the
EDIT statement. This causes BASIC to load
program lines into the Tandy 102 TEXT
program. To return the lines to BASIC from
TEXT, press the (EID key.

BASIC Keys

BASIC recognizes these special keys:

(ED same as typing FILES [ENTER l
(£2] same as typing LOAD"
(@ same as typing SA VE ''
(rn same as typing RUN (~E~N~T=E=R~l
~ same as typing LIST [ENTER l

12

(PRINT)

not used
not used
same as typing MENU
(ENTER)
same as typing LCOPY
(ENTER)

(SHI FT l(PR I NT l same as typing LLIST
(ENTER)

(PAUSE) pauses execution of a
BASIC program

(SHI FT)(BREAK l breaks execution of a
BASIC program

You can redefine the 8 of these keys-the 8
function keys-with the KEY statement.

BASIC Programs

BASIC lets you execute programs that contain:

• Up to 65529 lines

• Up to 255 characters per line .

• 1 or more BASIC statements per line, separated
by colons (:).

These are examples of simple BASIC program
lines. As these examples show, the spaces between
the keywords are optional:

10 CLEAR : CLS : PRINT @ 35, "MENU";

20 PRINT@75," I.Enter Data";:PRINT@l15,
"2.Update Data";

13

6/ BASIC Data

BASIC lets you enter data into a program as a
string or as a number. A string can contain any
kind of characters; BASIC can store up to 255
characters in a string.

A number can contain only numeric characters;
BASIC can store a number in 1 of 3 levels of
precision. (More precision requires more memory.)

• Double precision numbers-These numbers
range between + / - 1062 to + I - 1 o-64 and
consist of up to 14 significant digits, plus a
decimal point. To represent a double precision
in exponential form, use the E notation .
Examples:

1.3402100054 3.1415926535898
1.4434345533 lE-40

• Single precision numbers-These numbers range
between + / - 1062 to + / - 10-64 and consist
of up to 6 significant digits, plus a decimal
point. To represent a single precision in
exponential form, use the E notation.
Examples:

100.003 -23.4212 4.552E-14

14

• Integer numbers-These numbers range
between - 32768 to 32767 and include whole
numbers only (no decimal numbers). Examples:

32000 -2 500 -12345

Many statements let you enter data as an
expression. An expression can consist of constants,
variables, operations, and BASIC functions.

These are examples of numeric expressions:

52 N N+2 TAN(N) +5

These are examples of string expressions:

"FRANK" A$ A$+ "FRANK" A$+ CHR$(13)

Constants

BASIC lets you use constants in string or numeric
expression. To use a constant in a string
expression, enclose the value in quotes. Example:
"Enter Check 123"

To use a constant .in a numeric expression, omit
the quotes. Example: 1234. BASIC treats all
numeric constants as double-precision numbers.

Variables

BASIC lets you use variables in any kind of
expression. To use a variable, first equate the
variable's name to a constant (for example,
N = 17); then use the variable name to refer to the
constant.

15

A variable name can consist of any number of
characters-the first of which needs to be a
letter-however, BASIC recognizes only the first 2
characters in the variable name. For example,
BASIC treats all the following variable names as 1
name-the variable name SU:

SU SUPER SUPERLATIVE

BASIC initially assumes that all variables are
double precision numbers. To change this
assumption, you can use these type definition
statements:

DEFINT DEFSNG DEFSTR DEFDBL

You can also use any of these type declaration
tags:

OJo integer variable
! single precision variable
double precision variables
$ string variables

A type declaration tag takes precedence over a
type definition statement. For example, DEFINT
L defines the variable LI as an integer variable;
however, LI$ is a string variable.

A variable name can be simple or subscripted.
These are examples of simple variable names:

SU D1 VA

16

These are examples of subscripted variable names
(often called array variables):

SU(3,5 ,9) DATA(2,5,3,5,5,)

When using subscripted variable names, you need
to include a DIM statement at the start of the
program to dimension enough memory. The only
limit on the number of subscripts you can use is
the amount of free memory.

Operations

BASIC lets you use only 1 operator in a string
expression:

+ concatenate

BASIC lets you use any of the following operators
in a numeric expression:

+

+

*
I
\

A

MOD
<
>

positive
negative
addition
subtraction
multiplication
division
integer division (enter the "\" by
pressing (GRAPH lG at the
same time)
exponentiation
modulus
less than
greater than

17 .

=
< > or><
=< or <=
=>or>=
AND
OR
XOR
EQV
IMP
NOT

equal to
not equal to
less than or equal to
greater than or equal to
logical AND
logical OR
logical XOR
logical EQV
logical IMP
logical NOT

When you use more than one operator, BAS! C
performs the operations according to this
hierarchy:

A

+, - (positive or negative)
*,/

MOD,\
+,-

<,> ,=,=>' <=,> <
NOT
AND
OR

XOR
EQV
IMP

You can override this hierarchy by enclosing
operations in parentheses-BASIC works from the
inner parentheses outwards. For example,
C = (A + B)/ 5 + 3

18

Functions

BASIC lets you use any of these functions in a
string expression:

CHR$ DATE$ DAY$ INSTR LEFT$
MID$ RIGHT$ SPACE$ STR$ STRING$
TIME$

BASIC lets you use any of these functions in a
numeric expression:

ABS
cos
FIX
RND
VAL

ASC ATN
CSNG ERL
FRE INT
SGN SIN
VARPTR

19

CDBL CINT
ERR EXP
LEN LOG
SQR TAN

7/ BASIC Input/Output

BASIC has statements and functions that let you
input and output to 7 devices. These statements
and functions are listed on Table I.

Screen Positions

BASIC lets you use the LINE, PSET, and
PRESET statements to produce graphics on 15,360
screen positions (240 x positions and 64 y
positions) . The graphics screen positions are
shown on Figure 1.

BASIC lets you use the PRINT @ statement, and
the POS and CSRLIN functions, to control the
cursor's location on the 320 positions. The cursor
screen positions are shown in Figure 2.

Sound Frequencies

BASIC lets you use the SOUND statement to
produce music, using the sound-generator
frequency chart shown in Table 2.

20

RAM
CLOSE EOF INPUT# INPUT$ IPL KILL
LINE INPUT# LOAD LOADM MERGE
NAME OPEN PRINT# PRINT# USING
RUN RUNM SAVE SAVEM TAB

Cassette
CLOAD CLOAD? CLOADM CLOSE
CSAVE CSAVEM EOF INPUT# INPUT$
LINE INPUT # LOAD LOADM
MERGE MOTOR OPEN PRINT # USING
PRINT# RUN RUNM SAVE SAVEM TAB

Modem and RS-232
TAB MDM CLOSE EOF INPUT#
INPUT$ LOAD MERGE RUN SA VE
ON MDM GOSUB OPEN PRINT#
PRINT # USING COM ON COM GOSUB

Screen
CLS CSRLIN LIST POS PRINT PRINT @

PRINT USING SCREEN PRINT # TAB
PRINT USING # CLOSE OPEN

Line Printer
LCOPY LUST LPOS LPRINT
LPRINT USING CLOSE OPEN PRINT #
SA VE PRINT # USING TAB

Keyboard
INKEY$ INPUT INPUT$ KEY KEY LIST
KEY LINE INPUT ON KEY GOSUB

Sound generator
BEEP SOUND

Table 1. BASIC Device Statements and Functions

21

~•

~•

~•

~•

o •
&
0

Figure 1.
Graphic Screen
Positions

I

22

~•

Figure 2.
Cursor Screen
Positions

Octave

Note 1 2 3 4 5

G 12538 6269 3134 1567 783

G# 11836 5918 2959 1479 739

A 11172 5586 2793 1396 698

A# 10544 5272 2636 1318 659

B 9952 4976 2488 1244 622

C 9394 4697 2348 1174 587

C# 8866 4433 2216 1108 554

D 8368 4184 2092 1046 523

D# 7900 3950 1975 987 493

E 7456 3728 1864 932 466

F 7032 3516 1758 879 439

F# 6642 3321 1660 830 415

Table 2. Sound frequencies.

23

8/ BASIC Files

BASIC has many statements and functions that let
you input and output to "device files," and, in
many cases, these statements and functions are
"device generic." For example, PRINT # is a
device generic statement-It lets you output to
files on 6 devices: RAM, cassette tape, modern,
RS-232, screen, and printer.

Using device generic statements makes it easy to
modify a program for a different device. For
example, assume a program uses device generic
statements to output to the screen. You can easily
modify this program to output to the printer,
rather than the screen, simply by changing the
screen file specifications to printer file
specifications.

File Specifications

When inputting or outputting to a device file, you
need to give a file specification. The formats for
file specifications are:

RAM files:
Cassette files:
Modern files:
RS-232 files:
Screen files:
Line printer files:

24

"RAM:name"
"CAS:name"
''MDM:wpbs''
''COM:rwpbs''
"LCD:"
"LPT:"

name can contain 1-6 characters. With RAM files,
BASIC will add the following 2-letter extensions:
".BA", if the file is a BASIC program, or
".DO", if the file is ASCII data.

rwpbs specifies the following communication
parameters:

r baud rate (omit if the device is MDM)
1=75; 2=110; 3=300; 4=600; 5=1200;
6=2400; 7=4800; 8=9600; 9=19200.

w word length
6=6 bits; 7=7 bits; 8=8 bits.

p parity
0 = Odd; I = Ignore; N = None; E = Even.

b stop bits
1 = 1 stop bit; 2 = 2 stop bits.

s start/stop (XON/XOFF) enablement
E = enable;D = disable.

Examples of using the same statement to open a
file for outputting data to RAM, cassette tape, the
modem line, the RS-232 line, the screen, and the
line printer:

OPEN "RAM:ACCTS" FOR OUTPUT AS 1
OPEN "CAS:DATAl" FOR OUTPUT AS 1
OPEN "COM:37E1E" FOR OUTPUT AS 1
OPEN "MDM:7E1E" FOR OUTPUT AS 1
OPEN "LCD:" FOR OUTPUT AS 1
OPEN "LPT:" FOR OUTPUT AS 1

25

File Types

BASIC uses 2 kinds of files : BASIC program files
(which contain BASIC's compressed codes) or
ASCII data files (which contain standard ASCII
codes). In both cases, BASIC can access the file
only 1 way-using sequential access.

When inputting or outputting to a BASIC
program file, you need to use only 1 BASIC
statement. For example:

SAVE "RAM:PROG"
LOAD "MDM:7E1E"

When inputting or outputting to an ASCII data
file, you need to use a combination of BASIC
statements:

1. Use the OPEN statement to open a file buffer
for input, output, or appending to a file . (On
startup, BASIC lets you use only 1 file buffer, but
you can reset this with the MAXFILES
statement.)

2. If outputting to a file, use either the PRINT #
or PRINT # USING statement, depending on how
you want to format the data. (See PRINT and
PRINT USING for information on the 2 kinds of
formats .)

26

If inputting from a file, use either the INPUT #,
INPUT$, or LINE INPUT# statements depending
how you want to input the data. (See INPUT,
INPUT$, and LINE INPUT for information on
the 3 ways of inputting data.) You may also need
to use the EOF function to test whether you have
reached the end of the file.

3. Use the CLOSE statement to close the file
buffer.

This is an example of a program that outputs data
to an ASCII file:

10 MAXFILES = 1
20 OPEN "NAMES" FOR OUTPUT AS 1
30 FOR IOJ'o = 1 TO 10
40 INPUT "ENTER A NAME";A$
50 PRINT #1, A$;",";
60 NEXT IOJ'o
70 CLOSE #1

This is an example of a program that updates an
ASCII file:

10 MAXFILES = 2
20 OPEN "NAMES" FOR INPUT AS 1
30 OPEN "UPDATE" FOR OUTPUT AS 2
40 IF EOF(l) THEN 100
50 INPUT #1, A$
60 PRINT A$

27

70 INPUT "PRESS (ENTER l OR ENTER
NEW NAME";B$

80 IF B$<>'"' THEN PRINT #2,
B$;" ,"; ELSE PRINT #2 A$;",";

90 GOTO 40
100 CLOSE 1,2

28

9/ BASIC Program Flow

BASIC executes the statements in a BASIC
program sequentially. You can alter this program
flow with these statements:

CALL END FOR/NEXT GOSUB GOTO
IF/THEN ON GOTO ON GOSUB RESUME
RETURN ON TIME$ GOTO
ON KEY GOTO ON MDM GOTO
ON COM GOTO ON ERROR GOTO

Interrupt-Handling Routines

BASIC lets you use the ON TIME$ GOSUB, ON
KEY GOSUB, ON MDM GOSUB, and ON COM
GOSUB to set an interrupt condition which causes
BASIC to branch to an interrupt-handling
subroutine.

For example, the statement ON
TIME$=" 11 :30:00" GOSUB 1000 sets an
interrupt condition to occur when the time is
11 :30-At 11 :30, BASIC will go to the subroutine
at line 1000.

Before BASIC can recognize an interrupt
condition, you need to "turn on" the
appropriate interrupt with the TIME$, KEY,
MDM, COM statement. For example, TIME$ ON
tells BASIC to start watching the time so that it
can handle the interrupt set at 11 :30.

29

You can also "turn off" or "stop" an interrupt
using the same statements. For example, TIME$
OFF tells BASIC to quit watching the time.
TIME$ STOP tells BASIC to keep watching the
time, but not to handle the 11 :30 interrupt until it
encounters another TIME$ ON statement.

This is an example of a program using an
interrupt-handling subroutine:

10 ON TIME$= "20:00:00" GOSUB 1000
20 TIME$ ON
•
•

1000 TIME$ = "19:00:00"
1010 TIME$ OFF
1020 RETURN

The first time that the clock reaches 20:00:00,
BASIC jumps to line 1000, resets the clock, and
returns to what it was doing before the subroutine
call. The next time the clock reaches 20:00:00,
nothing happens because the interrupt was
disabled in line 1010.

Error Handling Routines

Another of the above statements-ON ERROR
GOTO-causes BASIC to interrupt program flow
if an error occurs and goto an error-handling
portion of the program. To return to the main
portion of the program, you need to use the
RESUME statement.

30

This is an example of a program using an error­
handling routine:

100 ON ERROR GOTO 1000
•
•
200 X

•
300 X

•
•

10000 I Y

300 I Y

1000 IF ERR< > 11 THEN PRINT ''Error
Code";ERR;" in line ":ERL : STOP ELSE
X = 100000: RESUME NEXT

If an error occurs, BASIC jumps to line 1000. If
the error is error 11 (division by zero), X is set to
a high value, 100000, and execution returns to the
line following the error line. If some other error
occurs, BASIC prints out the message and stops.

31

10/ BASIC Keywords

ABS(numeric expression)
returns the absolute value of numeric expression.

ABS(-5)
returns the number 5.

ASC(string expression)
returns the ASCII code for the first character in
string expression. (See BASIC codes.)

A TN (numeric expression)
returns the arctangent of number (in radians). The
resulting value ranges from -rr to 1r.

10 AN = ATN(.5)
sets AN to 0.46364760900081.

BEl<,P

causes the sound generator to beep for about 1/2
second.

10 BEEP

CALL entry address, expression!, expression2
calls a machine level subroutine beginning at entry
address. expression] and expression2 are optional;
if used, Register A will contain expression] (a
value from O to 255) and Register HL will contain
expression2 (a value from -32768 to 65535).

10 CALL 60000, 10, V ARPTR(A %)
calls a subroutine beginning at address 60000.
Upon entry to the subroutine, register A contains
10, and register HL contains the address of the
variable A%.

32

CDBL (numeric expression)
converts the value of numeric expression to a
double-precision number.

10 A# = CDBL (AOJo)
If A OJo contains 344, then A# contains 344.

CHRS (numeric expression)
returns the ASCII character for the value of
numeric expression . numeric expression must lie in
the range of O to 255. CHR$ is the inverse of the
function ASC. See the Appendices _for a list of
ASCII codes.

10 PRINT CHR$(65)
prints the character A.

CINT (numeric expression)
truncates the decimal portion of numeric
expression. The resulting value must lie in the
range -32768 to 32767.

10 A OJo = CINT(45.67)
sets A OJo equal to 45 .

CLEAR string space, high memory
clears the values in all numeric and string
variables and closes all open files. Also allocates
memory for string space and sets high memory
(the highest address BASIC can access) . If you
omit string space, BASIC allocates 256 bytes . If
you omit high memory, BASIC uses all memory
up to the top of RAM.

33

10 CLEAR
clears all variables, closes open files, sets the
available string space to 256 bytes and releases all
available memory to BASIC.

CLEAR 100,50000
clears all variables , closes open files, sets the
available string space to 100 bytes, and sets 50000
as the highest memory address available to
BASIC.

CLEAR 0
clears all memory.

CLOAD "file",R
clears the current BASIC program and loads file,
a BASIC program, from cassette tape. If you omit
file, BASIC loads the first BASIC program it
finds. If R is used, BASIC executes the new
program as soon as the load is complete.

CLOAD "ACCT",R
loads and runs the BASIC program ACCT stored
on tape.

CLOAD
loads the first BASIC program found on the
cassette tape.

CLOAD? file
compares file with the BASIC program currently
in memory. If there are any differences, BASIC
displays the message VERIFY FAILED; otherwise
BASIC simply prints OK.

CLOAD? "ACCT"
compares the cassette file ACCT with the program
currently in memory.

34

CLOADM ''file"
loads the machine-code program called file from
cassette into memory, at the addres specified when it
was written to the cassette tape.

CLOADM ''MEMTST''
loads the machine program MEMTST from the
cassette.

CLOSE file buffer
closes the specified file buffer. If omitted, BASIC
closes all open file buffers. (See OPEN.)

CLOSE 1, 2, 3
closes file buffers 1, 2, and 3.

CLS
clears the screen and moves the cursor to the
upper-left corner.

CLS: PRINT "The old screen is gone!"

COM ON / COM OFF / COM STOP
turns on, turns off, or temporarily stops the ON
COM interrupt. (See ON COM GOSUB.)

COM ON
turns on the ON COM interrupt.

CONT
resumes execution of a program after you have
pressed (BREAK l or after BASIC has encountered
a STOP statement in the program.

CONT
resumes execution of the BASIC program.

35

COS (numeric expression)
returns the cosine of angle given by numeric
expression. You must give this angle in radians.

10 Y = COS(60*0.01745329)
assigns Y the value 0.50000013094004.

CSA VE "file " ,A
stores the current BASIC program on cassette tape
using the specified file .A is optional; if used,
BASIC saves the program as an ASCII file­
Otherwise, BASIC stores the program as a BASIC
program file.

CSA VE "TANDY"
saves the current program on cassette tape as a
compressed BASIC file under the name
"TANDY."

CSA VE "TANDY" ,A
save~ the current program on cassette tape as an
ASCII file.

CSA VEM "file" , start address, end address,
entry address
writes the machine-code program stored from start
address to end address on cassette . tape using the
specified file. entry address is optional; if omitted,
BASIC assumes that the program entry address is
the same as the start address.

CSAVEM "MEMTST" ,50000,50305,50020
writes the program stored from addresses 50000 to
50305 with the entry point at 50020 on cassette
tape, giving the file the name "MEMTST."

36

CSNG (numeric expression)
returns the single-precision form of numeric
expression.

10 A! = CSNG(0.66666666666)
sets A! equal to 0.666667.

CSRLIN
returns the vertical position (line number) of the
cursor where O is the top line and 5 is the bottom
line.

10 CLS: A% = CSRLIN
clears the screen and assigns A% the value 0.

DATA constant list
defines a set of constants (numeric and/ or string)
to be accessed by a READ command elsewhere in
the program. See also READ and RESTORE.

DATA 10,25,50, 15, "Probabilities", "Total"
stores the given values.

DATE$
returns the date. The date has the form
MM/DD/YY.

DATE$ = "11/02/84"
sets the date to November 02, 1984.

PRINT DATE$
prints the date.

37

DAY$
returns the day. The day is a 3-letter abbreviation:
'Mon", "Tue" , "Wed" , "Thu", "Fri", "Sat",
or "Sun" .

DAY$ = "Fri"
sets the day to Friday.

PRINT DAY$
prints the day .

DEFDBL letter list
defines all the variables which begin with the
letters in letter list as double-precision variables.
letter list consists of individual letters and/ or letter
ranges of the form letterl-letter2.

100 DEFDBL D, X-Z
defines as double-precision all variables beginning
with the letters D, X, Y, and Z.

D EFINT letter list
defines all the variables which begin with the
letters in letter list as integer variables. letter list
consists of individual letters and/or letter ranges
of the form letterl-letter2.

120 DEFINT D, X-Z.
defines as integer type all variables beginning with
the letters D, X, Y, and Z.

DEFSNG letter list
defines all the variables which begin with the
letters in letter list as single precision variables.
letter list consists of individual letters and/ or letter
ranges of the form letter l-letter2.

38

100 DEFSNG D, X-Z
defines as single precision all variables beginning
with the letters D, X, Y, and Z.

DEFSTR letter list
defines all the variables which begin with the
letters in letter list as string variables. letter list
consists of individual letters and/ or letter ranges
of the form letter I - letter2.

100 DEFSTR D, X-Z
defines as string all variables beginning with the
letters D, X, Y, and Z.

DIM variable name (dimensions)
defines variable name as an array with one or
more dimensions. The number of dimensions you
can use depends on the amount of available
memory. To redimension an array, you must first
use the CLEAR command to clear the array.

DIM A$(10), BALOJo(I0,10)
defines a string array, A$, which consists of 11
elements, A$(0) through A$(10), and an integer
array, BALOJo~ which consists of 121 elements,
BALOJo(0,0) through BALOJo(l0,10).

ED IT line number range
enters the TEXT program so that you can edit the
specified lines. To return to BASIC, press (EID.

EDIT
lets you edit the entire program.

ED IT 100-500
lets you edit lines 100 through 500

EDIT.
lets you edit the current line.

39

EDIT 100-
lets you edit from line 100 to the end of the
program.

END
terminates execution of the BASIC program. If
omitted, BASIC executes up to the physical end of
the program.

END

EOF (file buffer)
checks to see if the file assigned to the specified
file buffer has reached the end of the file. If so,
EOF returns a -1; if not EOF returns a 0.

IF EOF(l) THEN 200
checks the file assigned to buffer 1 for end of file.
If it has reached the end of file, the program
jumps to line 200.

ERL
returns the line number of the last error. If the
last error is not from a program line but from a
direct mode command, ERL returns the value
65535. ERL is useful in an error-handling routine.
(See ON ERROR and ERR.)

2000 IF ERR = 23 THEN RESUME ELSE
PRINT "Error" ;ERR; "in line" ;ERL:

STOP
If the error is an 1/0 error (ERR = 23), BASIC
simply retries the 1/O(RESUME). If there is some
other error, such as a syntax error, BASIC
displays "Error 2 in line 1000" and stops the
program.

40

ERR
returns the error code number of the last error.
ERR is useful in an error-handling routine. (See
ON ERROR and ERL.)

2000 IF ERR = 18 THEN PRINT " 1/0 Error"
ELSE STOP

ERROR numeric expression
simulates the error specified by numeric
expression. BASIC acts as if your program has
committed the error. ERROR is useful in an
error-handling routine. (See ON ERROR.)

100 ERROR 10
prints DD Error in 100 and stops execution of the
program.

EXP (numeric expression)
returns the exponential (or natural antilog) of
numeric expression. numeric expression must be in
the range +145.062860858624/-147.365445951624 or
an overflow error occurs. EXP is the opposite of
the function LOG.

PRINT EXP(14)
prints 1202604.2841644, the natural antilog of 14.

FILES
causes BASIC to display all the files currently
stored in RAM, without exiting BASIC. BASIC
will display an asterisk (*) next to the program that
is currently running.

41

FIX (numeric expression)
returns the whole number portion of numeric
expression .

10 A = FIX(1440.43)
sets A equal to 1440.

10 A + FIX(-33494123.4442)
sets A equal to -33494123.

FOR variable=initial value TO final value
STEP increment
NEXT variable
executes the statements between the FOR and
NEXT loop repetitively, from initial value to final
value using the specified STEP increment. STEP
increment is optional; if omitted, BASIC assumes
STEP 1.

10 FOR I= 10 TO 1 STEP -1
20 PRINT I;
30 NEXT I

prints the numbers 10 through 1.

FRE (0)
returns the current amount of unused memory.

PRINT FRE(0)

FRE ("'')
returns the current amount of unused string space.

PRINT FRE(" ")

42

GOSUB line number
transfers program control to the subroutine
beginning at line number. You must terminate the
subroutine with a RETURN command.

GOSUB 1000
goes to the subroutine beginning at line 1000.

GOTO line number
goes to the specified line number.

GOTO IO

HIMEM
returns the top address of memory available to
BASIC. You may change this value with the
CLEAR statement.

PRINT HIMEM

IF relational or logical expression THEN
command(s) ELSE command(s)2

tests a relational or logical expression. If true,
BASIC executes command(s)l. If false, BASIC
executes command(s)2. ELSE command(s)2 is
optional; if omitted, BASIC assumes the ELSE
clause is the next line.

10 IF A < 90 THEN GOTO 100
tests A < 90. If true, BASIC goes to line 100; if
false, BASIC continues with the next line.

10 IF A = 10 OR A = 20 THEN B$ =
"PAID" ELSE B$ = "Not Paid"

tests the condition A= 10 OR A= 20. If true,
BASIC assigns B$ the string "Paid"; if false,
BASIC assigns B$ the string "Not Paid."

43

INKEY$
returns the value of the key currently pressed, if
any. If no key is pressed, the function returns a
null character ('"') . If you press an undefined
function key, or the (LABEL l key, INKEY$
returns an ASCII 0 with a length of 1.

10 A$ = INKEY$: IF A$ = "" THEN 10

lNP (port number)
returns a byte from the specified port. port
number must be a numeric expression in the range
of Oto 255. INP is the complement function to
the OUT command. (See the Tandy 102 Technical
Reference Manual for information about ports.)

A 0/o = INP(5)
sets A 0/o equal to the byte value at Port 5.

INPUT "prompt";variable list
awaits input from the keyboard and assigns the
input to the variables in variable list. "prompt" is
optional.

10 INPUT "Enter your name";A$
prompts the operator with "Enter your name";
then assigns the value entered to A$.

INPUT #file buffer,variable list
inputs data sequentially from the file opened
under file buffer. (See OPEN.)

10 INPUT #l ,A$,B$,C
inputs values for A$, B$ and C from the file
opened as file #1.

44

INPUT$ (numeric expression)
returns a string of numeric expression characters
from the keyboard. numeric expression must be in
the range of 1 to 255. INPUT$ does not display
the input.

A$ = INPUT$(5)
waits for the operator to input 5 characters and
assigns this value to A$.

INPUT$ (numeric expression,file buffer)
Same as INPUT$ except input is from the
specified file buffer.

A$= INPUT$(5, 1)
inputs the next 5 characters from file buffer 1.

INSTR (start position, search string, match
string)
searches search string for match string and, if
found, returns the position of match string;
otherwise, returns a 0. start position is optional; if
omitted, INSTR starts the ·search at position I.

PRINT INSTR("dimethylsulfate", "sulfate")
displays 9 ("sulfate" starts at position 9) .

INT (numeric expression)
returns the whole number representation of
numeric expression, not greater than numeric
expression.

A# = INT(214441 l 13.443)
sets A# equal to 2144433113.

A# = INT(-214.995)
sets A# equal to -215.

45

IPL "file"
defines a RAM file named file as the startup
program . After executing this command, the
program named file runs whenever you turn on
the computer. IPL executes properly only if the
computer is turned off while in BASIC.

IPL "TIMSET.BA"
To disable auto startup type IPL (ENTER l.

KEY function key, string expression
defines function key as string expression. string
expression must be 15 or less characters .

KEY 6, "PRINT TIME$" + CHR$(13)
defines function key 6 as PRINT TIME$ followed
by a carriage return . Now whenever you press
function key 6, BASIC returns the time. (See also
ON KEY and KEY ON .)

To reset the function keys to the cold start
default, you must call two subroutines :

CALL 23164,0,23366
CALL 27795

These calls reset the function keys to their original
value .

KEY (function key) ON/OFF /STOP
enables, disables, or temporarily stops the ON
KEY interrupt. (See ON KEY GOSUB.)

100 KEY (2) ON
enables function key 2.

100 KEY ON
enables all function keys.

100 KEY (4) OFF
disables function key 4.

46

KEY LIST
lists on the display the current definitions for the
function keys in the format:

key 1 key 2
key 3 key 4
key 5 key 6
key 7 key 8

KILL "file"
deletes a RAM file. You must include the file's
extension.

KILL "BILLS.BA"
deletes the RAM file BILLS.BA.

Note: If you have 200 bytes or less of free
memory, KILL may not delete a file. If this
situation occurs, delete program lines manually
or go to TEXT, select a file, and put it in the
PASTE buffer. Then return to BASIC and
KILL the unwanted files.
Also, please note that you cannot kill a BASIC
program while it is in the work area.

LCOPY
prints the text on the display. LCOPY ignores
non-text data.

LEFT$ (string expression, portion)
returns the left portion of string expression.
portion is a numeric expression.

10 AC$ = LEFT$("817552161 ",3)
.sets AC$ to "817".

47

LEN (string expression)
returns the number of characters in string
expression.

PRINT LEN("HELLO")
prints 5.

LET variable name= value
equates a variable name with value. The word
LET can be omitted; it is included to be
compatible with older forms of BASIC.

LET A$ = "The"
assigns "The" to A$.

A$ = "The"
assigns "The" to A$.

LINE (xl,yl)-(x2,y2), switch, BF
draws a line from coordinates xl,yl to x2,y2. (See
"Graphic Screen Locations" in "BASIC
Input/Output".) If (xl,yl) is omitted, BASIC
starts the line from the x,y coordinates of the last
LINE command, or from 0,0 if this is the first
LINE command.

switch tells BASIC whether to set or reset the
pixels: odd values tell BASIC to set the pixels;
even values tell BASIC to reset the pixels. If
omitted, BASIC uses set.

B tells BASIC to draw a box, rather than a
line. BF tells BASIC to fill in the box. Both B
and BF require that you specify switch.

10 LINE (20,20)-(50,63)
20 LINE-(30,30)

draws lines from (20,20) to (50,63), and from
(50,63) to (30,30).

48

10 LINE (20,20)-(50,63) ,0
resets (erases) all points on a line from (20,20) to
(50,63)

10 LINE (0,0)-(239,63) ,1,B
draws a box with corners at (0,0) and (239,63).

10 LINE (0,0)-(239,63) , l ,BF
draws a box with corners at (0,0) and (239,63) and
then sets all the points inside the box.

LINE INPUT ''prompt'; string variable
awaits for the operator to enter a line of data
from the keyboard; then, when the operator
presses the carriage return ((ENTER l), assigns that
string to string variable. prompt is optional.

10 LINE INPUT "ENTER NAME AND
ADDRESS:";NA$

displays "ENTER NAME AND ADDRESS" and
waits for the operator to enter this information. If
the operator enters "John "Rocky" Smith, 5641
Lancaster, East Pearoe, Ohio', this entire value is
assigned to NA$.

LINE INPUT# file buffer, string variable
reads the next line (all text up to the carriage
return) from the specified file buffer and assigns
the value of this line to string variable.

LINE INPUT #l ,Z$
reads the next line from the file assigned to buff er
#1, and assigns the value of this line to Z$.

49

LIST lines
displays the specified program lines.

LIST
displays the entire program.

LIST 100-300
displays from line 100 to line 300.

LIST .-
displays from the current line to the end of the
program. (The period (.) represents the current
line.)

LLIST lines
Same as list except output is to the printer. (See
also LIST.)

LUST

LOAD ''file'; R
loads a BASIC program file from RAM, cassette,
the RS-232, or the modem. If you omit the device
in the file specification, BASIC assumes RAM.

LOAD "RAM:TIMSET"
loads the BASIC program TIMSET.BA from
RAM.

LOAD "CAS:ACCT" ,R
loads and runs the BASIC program ACCT from
cassette tape.

LOAD "COM:78NIE"
loads a BASIC program from the RS-232C line,
using 4800 baud, 8-bit words , no parity, 1 stop
bit, and start/stop enabled.

50

LOAD "MDM:702E" ,R
loads a BASIC program from the modem, using
7-bit words, odd parity, 2 stop bits, and start/stop
enabled.

LOADM "file"
loads a machine-language program file from RAM
or cassette tape. If you omit the device in the file
specification, BASIC assumes RAM. When
BASIC loads the file, it prints out its start
address, end address, and entry point, if any.

LOADM "MEMTST"
loads the machine-language program called
MEMTST.CO from RAM.

LOADM "CAS:MEMTST"
loads the machine-language program called
MEMTST from cassette tape.

LOG (numeric expression)
returns the natural logarithm (base "E") of
numeric expression. numeric expression must be
greater than zero.

10 A = LOG(10)
sets A equal to 2.302585092994.

LPOS (0)
returns the current position of the printer print
head within the printer buff er.

LPRINT "Printer head positon:"LPOS(0)
prints the message followed by the number.

51

LPRINT expression list
same as print except output is to the line printer.
(See PRINT.)

LPRINT "The total for ";A$;" was "; TT
If A$ contains the string April and TT contains
the value 1332.44, this statement prints: The total
for April was 1332.44

LPRINT X,Y,Z
prints the value of X beginning in column 0, Y in
column 14, and Z in column 28.

LPRINT X,,,z
prints the value of X beginning in column 0, and
Z in column 42 (two columns are skipped because
of the two commas.)

LPRINT USING "format string";expression
list
same as PRINT USING except output is to the
line printer. (See PRINT USING.)

MAXFILES
stores the maximum number of file buffers that
you can have open at the same time. On startup,
MAXFILES equals 1.

10 MAXFILES = 5
sets MAXFILES to 5.

PRINT MAXFILES
prints the current value of MAXFILES.

52

MAXRAM
contains the memory size of Tandy 102.

CLEAR 1000,MAXRAM
clears 1000 bytes for string storage and sets the
high memory to the maximum amount for the
Tandy 102.

MDM ON/OFF/STOP
enables, disables, or stops the ON MDM
interrupt. (See ON MDM.)

10 MDM ON
enables the ON MDM interrupt.

MENU
exits BASIC and returns to the Tandy 102 Main
Menu. If you are editing a current RAM file,
BASIC rewrites the file before returning to the
Menu.

MENU

MERGE ''file"
loads a BASIC program stored as an ASCII file
from RAM, cassette tape, the RS-232, or the
modem, and merges it with the current program.
If BASIC finds a duplicate line number, the line
from file replaces the current line. If you omit the
device from the file, BASIC assumes RAM.

MERGE "RAM:ACT.DO"
loads ACT.DO from RAM and merges it with the
current program.

MERGE "CAS:ACCT"
loads ACCT from cassette tape and merges it with
the current program.

53

MERGE "COM:78E1E"
loads the the file coming in on the RS-232C line
using the TELCOM parameter settings of
"78E1E" and merges it with the current program.

MID$ (string expression,position, length)
returns a portion of string expression that starts at
the specified position and continues for the
specified length. length is optional.

10 HASH$ = MID$(A$,2,2)
If A$ contains the string 003449953, then this
statement assigns string 03 to HASH$.

MID$ (string expressionl,position,length) =
string expression2
replaces characters of string expression], starting
at position, with string expression2. length is
optional and, if present, it is ignored.

10 MID$(A$,5) = "FF"
If A$ contains the string 00000000, this statement
changes A$ to 0000FF00.

1000 MID$(A$,4) = "ABCDEF"
If A$ contains the string 0O0ABCDE, this
statement changes A$ to 000ABCD.

MOTOR ON or OFF
turns on or off the cassette recorder motor.

MOTOR ON
turns on the cassette recorder motor.

54

NAME "RAM:old file" AS "RAM:new file"
renames a RAM file. You must include the
extensions in the files.

NAME "ACCTS.DO" AS "OLDACT.DO"
renames the RAM file ACCTS.DO to
OLDACT.DO.

NEW
erases the current program, sets numeric variables
equal to zero, and sets string variables equal to
null(""). NEW does not change the string space
allocation.

NEW

ON COM GOSUB line number
tells BASIC to go to the subroutine at line number
when it receives data from the RS-232. The COM
interrupt must be on. (See COM ON.)

10 ON COM Gosua 1000
20 COM ON
•
•
1000 OPEN "COM:78N1E" FOR INPUT AS
1
1010 OPEN "IMPDAT.DO" FOR OUTPUT

AS 2
1020 LINE INPUT -1, A$
1030 PRINT -2, A$
1040 IF NOT EOF(l) THEN GOTO 1020
1050 CLOSE 1,2
1060 RETURN

55

When data comes in on the RS-232C line, control
transfers to line 1000, where it copies the input
into a RAM file called "IMPDAT.DO".

ON ERROR GOTO line number
tells BASIC to go to an error-handling routine at
line number when an error occurs. To return from
the error-handling routine, use RESUME.

100 ON ERROR GOTO 1000
when an error occurs, goes to Line 1000.

ON numeric expression GOSUB line number
list
goes to subroutine starting at the nth line number.
n is specified by the numeric expression.

10 ON X GOSUB 100,200,300
calls the subroutine beginning at line 100, 200, or
300, if X equals 1, 2, or 3, respectively.

ON numeric expression GOTO line number list
goes to the nth line number. n is specified by the
numeric expression.

10 ON X GOTO 100,200,300
branches to 100, 200, or 300, if X equals 1, 2, or
3, respectively.

ON KEY GOSUB line number list
tells BASIC to go to a subroutine beginning at
one of the line numbers when a function key is
pressed. The function key interrupt must be on.
(See KEY ON.)

56

10 ON KEY GOSUB 1000,2000,3000,,5000
tells BASIC to go to the following subroutines if a
function key is pressed: Function Key 1-Line
1000, Function Key 2-Line 2000, Function Key
3-Line 3000, Function Key 4 -not defined in
this statement, Function Key 5-Line 5000,
Function Key 6, 7, and 8-not defined in this
statement.

ON MDM GOSUB line number
tells BASIC to go to a subroutine at line number
when it receives data over the modem line. The
modem interrupt must be on. (See MDM ON.)

10 ON MDM GOSUB 1000
defines a modem interrupt routine beginning at
line 1000.

ON TIME$= ''time" GOSUB line number
tells BASIC to go to a subroutine starting at line
number when TIME$ = time. time is a string
expression of the form HH:MM:SS. The TIME$
interrupt must be enabled. (See TIME$ ON.)

10 ON TIME$ = "14:20:00" GOSUB 1000
tells BASIC to go to Line 1000 at 2:20PM
(14:20:00).

OPEN "file" FOR mode AS file buffer
opens a file buffer for accessing a file in RAM,
cassette tape, the RS-232, the modem, the screen,
or the line printer using any of these modes:
OUTPUT-sequential output, starting at the file's

57

beginning INPUT-sequential input, starting at
the file's beginning APPEND-sequential output,
starting at the file's end .

10 OPEN "RAM:ACCT.DO" FOR APPEND
AS 1

opens a RAM file called ACCT.DO for
appending, and assigns it the file buff er 1.

10 OPEN "CAS:" FOR OUTPUT AS 3
opens an output file on cassette and assigns it to
file buffer 3.

10 OPEN "MDM:6ElE" FOR INPUT AS 4
opens a modem file for input as file buff er 4,
using the "6E1E" TELCOM parameters.

10 OPEN "LCD:" FOR OUTPUT AS 1
opens a screen file as file buff er 1.

OUT port number, byte value
outputs byte value to port number. port number
and byte value are numeric expressions in the
range O to 255. (See the Tandy 102 Technical
Manual for information about ports.)

10 OUT 55, 100
outputs 100 to CPU port 55.

PEEK (memory address)
returns the byte value stored at memory address.
memory address and the returned value are both
in decimal form.

10 A$ = PEEK(16999)
assigns the byte value at address 16999 to A%.

58

POKE memory address, byte value
loads memory address with byte value. Both must
be expressed as decimal numeric expressions.

100 POKE 60000, 104
loads 104 into address 60000.

POS (dummy numeric expression)
returns the current horizontal screen position of
the cursor.

100 OPO/o = POS(0)
assigns OPO/o the current horizontal cursor
position.

POWER numeric expression
changes the Tandy 102's automatic power down
period to numeric expression X 0.1 minutes. (See
also the Tandy 102 Owner's Manual.)

10 POWER 10
resets the automatic power down period to one
minute (10 X 0.1).

POWER CONT
disables the automatic power down feature of the
Tandy 102.

10 POWER CONT

59

POWER OFF,RESUME
immediately turns off the power. RESUME is
optional; if present when you turn the power back
on, the Tandy 102 resumes execution of the
program at the statement following the POWER
OFF,RESUME. If not present, the Tandy 102
returns to the Main Menu upon power up.

10 IF TIME$>" 11 :30:00" THEN POWER
OFF

turns off the power if the clock is past 11 :30 A.M.

PRESET (x-coordinate,y-coordinate)
turns off the LCD pixel at (x-coordinate,y­
coordinate). x-coordinate may range from O to
239, and y-coordinate may range from O to 63.
(See also PSET.)

10 PRESET (55,10)
turns off the pixel at (55, 10).

PRINT expression list
prints expression list on the display. You can
separate the data in expression list with a comma
or a semi-colon. A comma causes BASIC to move
to the next print zone, a ~emi-colon causes it to
stay in the same position. No punctuation at the
end of expression list causes BASIC to move to
the next line.

BASIC prints positive numbers with leading
blanks, all numbers (positive and negative) with
trailing blanks, and strings without any leading or
trailing blanks.

60

PRINT "JOHN", "DOE"
prints JOHN DOE on the display; then moves the
cursor to the next line.

PRINT "JOHN";" ,";"DOE";
prints JOHN,DOE on the display and leaves the
cursor in the position immediately following the E
in DOE.

PRINT @ screen position, expression
prints expression at the specified screen position.
(See BASIC Input/Output.)

PRINT @ 140, "MENU"
prints "MENU" at screen position 140.

PRINT #file buff er, expression list
same as PRINT except the output is to a file.

200 PRINT #1,"JOHN";",";"DOE'';
prints JOHN ,DOE to file buffer #1 and leaves the
file pointer at the position immediately after the E
in DOE.

PRINT #file number, USING ''format";
expression list
same as PRINT USING except output is to a file
buffer. (See PRINT USING.)

PRINT USING ''format";expression list
prints the data in expression list using the
specified format. The data in expression list may
be separated either by commas or semi-colons.

61

format consists of field specifiers which describe
the type and the format to use in printing the
data. If there is more data in expression list than
field specifiers, BASIC reuses the field specifiers.

The string field specifiers are:
"!" prints the first character in a string.

PRINT USING "!":"Tandy" T
"\n \" prints n + 2 characters in a string. n is

any number of blank spaces. (To
enter the "\ ", press (GRAPH JG.)
PRINT USING "\ \ ";"Tandy" Tand

The numeric field specifiers are:
prints a number, right justified, in the

specified digit positions. If the
number is larger than the field,
BASIC precedes the number with % .
PRINT USING "#####";5

5
+ inserts the algebraic sign of a

number.
PRINT USING "+ #####"; -13

-13
PRINT USING"##### +";14

14 +
if negative, inserts a minus sign in a
number; if positive, inserts a blank
space in a number.
PRINT USING " - #####"; 14

14
PRINT USING "#####.## -"; - 0.45

-0.45

62

** replaces a number's leading spaces
with asterisks .
PRINT USING "**#####";145
****145

$$ precedes a number with a dollar sign .
PRINT USING "$$#####";450

$450
**$ precedes a number with asterisks and

then a dollar sign.
PRINT USING "**$###";12
***$12

• inserts a decimal point in a number.

.1\.1\.1\.1\

PRINT USING "#####.##";14.5
14.50

PRINT USING "#####. ##" ;0.588
0.59

inserts commas in a number.
PRINT USING "#########,";14432

14,432
prints number in exponential format.
(To enter "A", press (SHIFT)(ID.)
PRINT USING "###.1\.1\.1\.1\";

150000
15E + 04

PSET (x-coordinate,y-coordinate)
turns on the graphics pixel at specified x,y
coodinate. (See "Graphic Screen Coordinates" in
the "BASIC Input/Output Section .")

10 PSET (40,45)
turns on the pixel at 40,45 .

63

READ variable list
reads the next constants in a DAT A statement and
assigns them to the variables in variable list. (See
also DATA and RESTORE.)

100 DATA 0,4, 0.2 "Trinity River"
120 READ A,BO/o,C$

assigns A the value 0.4, BO/o the value 0.2, and C$
the string Trinity River.

REM comment statement
tells BASIC that the remainder of the line is a
comment. You may abbreviate REM with an
apostrophe. If the comment follows another
BASIC command, you must either use the
apostrophe or precede REM with a colon.

10 REM This program finds the standard
deviation

10 ' This program finds the standard
deviation

100 AVE SUM / TT 'Calculate the average
100 A VE = SUM / TT :REM Calculate the
average

RESTORE line number
resets ·the DAT A statement pointer to the first
item in the DATA statement on line number. line
number is optional; if omitted, BASIC uses the
first DAT A statement. (See also DA TA and
READ.)

64

100 DATA "Nuts", "Bolts", "Screws",
"Hammers"

•
•
300 READ ITEM$(1),ITEM$(2),ITEM$(3),

ITEM$(4)
•
•
600 RESTORE 100
610 READ CT$(1),CT$(2),CT$(3),CT$(4)

Line 300 assigns the strings of the DAT A
statement in line 100 to ITEM$ 1 through 4. Line
600 resets the DAT A pointer so that line 610
reassigns the strings to CT$ 1 through 4.

RETURN
ends subroutine and returns to the statement
immediately following the last GOSUB statement.

RETURN

RESUME line number
ends an error handling routine by branching to
line number where BASIC begins normal
execution. If line number is omitted, BASIC
returns to the line which caused the error. You
can specify NEXT as the line number, in which
case BASIC returns to the line immediately
following the error-causing line.

1000 IF ERR = 18 THEN PRINT @O,
"Printer Not Ready!!!":RESUME

65

If an 1/0 error occurs, BASIC prints the message
and resumes execution at the off ending statement.

RESUME NEXT
BASIC proceeds to the next statement.

RIGHT$ (string expression,portion)
returns the right portion of string expression.
portion is a numeric expression.

10 SEC$ = RIGHT$(TIME$,2)
assigns the current second count to SEC$.

RND numeric expression
returns a pseudo-random number between 0 and 1.
If numeric expression is non-zero, RND returns a
new random number . If numeric expression equals
0, RND returns the last random number
generated.

20 PRINT RND(l)
30 PRINT RND(0)

prints the same random number twice.
RND always generates the same random number
series. If your application requires a different
random number starting the sequence each time,
you can use the clock to establish a starting point
in the sequence. For example, the following
routine points the random number generator to
one of 60 starting points in the generator:

10 SEC = V AL(RIGHT$(TIME$,2))
20 FOR I = 1 TO SEC
30 DUMMY = RND(l)
40 NEXT I

66

RUN line number, R
clears all variables, closes all open files, and
executes the current program, starting at line
number. line number is optional; if omitted,
BASIC starts execution at the first line of the
program. R is also optional; it tells BASIC to
leave current files open.

RUN 100
clears all variable values and starts executing the
program at line 100.

RUN ''file",R
same as RUN, except the program is loaded from ·
the specified file before BASIC runs it.

1000 RUN "PART2.BA" ,R
loads and executes the RAM file PART2.BA,
keeping all open files open.

100 RUN "MDM:7E2E"
loads and executes the BASIC program coming in
over the modem lines.

RUNM "file"
closes all open files; then loads and executes file,
an executable machine-code program stored in
RAM or cassette tape. If the file does not include
a device specification, RAM is assumed.

67

RUNM "MEMTST"
loads the program MEMTST. CO from RAM and
executes it.

RUNM "CAS:"
loads and runs the first machine-language program
found on the cassette tape.

SAVE ''file",A
writes the current BASIC program to a file in
RAM , cassette tape, the RS-232, the modem, the
screen, or the printer. A is optional; if used, the
program is saved as an ASCII data file.

SA VE "TIMSET"
writes the current BASIC program to the RAM
file TIMESET.BA.

SAVE "PART3" ,A
writes the current BASIC program to the RAM
file PART3.DO. The file is stored in ASCII
format.

SA VE ''CAS:CLOCK''
writes the current program to cassette tape naming
the file CLOCK (identical to the command
CSA VE"CLOCK") .

SAVE "MDM:7NIE"
sends the current program out the modem, using
the configuration 7 bit words, no parity check, 1
stop bit, and stop/start enable.
(You do not need to save the changes that you make
to a program stored in RAM. BASIC automatically
does this for you.)

68

SA VEM "file, start address, end address,
entry address
writes the machine-code program stored from start
address to end address to cassette tape or RAM
under the name file. entry address is optional; if
not present , BASIC assumes the program entry
address is the same as the start address.

SA YEM "CAS:MEMTST" ,50000,50305,50020
writes the program stored from addresses 50000 to
50305 with the entry point at 50020 to cassette
tape, giving the file the name MEMTST.

SAVEM "MEMTST" ,50000,50305,50020
writes the program stored from addresses 50000 to
50305 with the entry point at 50020 to RAM,
giving the file the name MEMTST.CO.

SCREEN on/off
locks or unlocks the bottom (LABEL) line on the
display for scrolling. on is 0,0 and off is 0, 1.

SCREEN 0,0
causes LABEL line to disappear and allows you to
scroll with all eight lines .

SCREEN 0,1
causes LABEL line to reappear.

SGN (numeric expression)
returns a -1 for negative numbers, 0 for zero, and
1 for positive numbers.

200 TTL = 10 * SGN(CR)
sets TTL equal to either 10, 0, or -10, depending
on whether CR is positive, zero, or negative.

69

SIN (numeric expression)
returns (in radians) the trigonometric sine of
numeric expression.

100 Y = SIN(l.5)
assigns Y the value 0.99749498660406.

SOUND pitch, length
"plays" a given pitch for the given length. length
ranges from O to 255 . Dividing length by 50 gives
the approximate length in seconds. pitch ranges
from O to 16383, with the smaller values
corresponding to higher pitches . (See "Sound
Frequencies" in the "BASIC Input/ Output"
section for the frequencies to use for musical
notes.)

SOUND ON or OFF
Turns on or off the beep BASIC uses when: (1)
You load a file from cassette, and (2) the Tandy
102 is waiting for a carrier signal from the
telephone modem lines. This statement has no
affect on the BEEP or SOUND statement.

SPACE$ (length)
returns a string of length spaces.

100 B$ = SP ACE$(20) + A$
sets B$ equal to a string of 20 spaces followed by
the string stored in A$.

70

SQR (numeric expression)
returns the square root of numeric expression.
numeric expression must be a positive number.

10 C = SQR(A "'2 + B"'2)
sets C equal to the square root of the sum of A 2

and B2
•

STOP
stops execution of a BASIC program. You can
continue execution with the CONT statement.
STOP and CONT are useful for debugging a
program.

100 STOP
stops execution at line 100.

STR$ (numeric expression)
converts numeric expression to its string
representation. This function is the inverse of
VAL.

B$ = "$" + STR$(BAL) + ".00"
If BAL contains the value 133, this statement sets
B$ equal to $ 133.00.

STRING$ (n,character)
returns a string in which character is repeated n
times . n can be between O to 255. character can be
a string or an ASCII code. ("See BASIC Codes.")

PRINT STRING$(20, "*")
prints a string of 20 asterisks.

PRINT STRING$(40,239)
prints a string of 40 solid blocks (239 is the ASCII
code for a solid block.)

71

TAB (numeric expression)
skips numeric expression spaces before printing the
next data item. numeric expression ranges between
0 and 255.

10 PRINT TAB(30);"Table 1"
prints "Table l" starting in column 30.

20 LPRINT TAB(10);"Total";TAB(20);
''Number'' ;T AB(30); ''Balance''

skips 10 spaces and prints Total on the printer,
skips another 20 spaces and prints Number, and
finally skips another 10 spaces and prints Balance.

TAN (numeric expression)
returns the tangent of numeric expression. numeric
expression must be in radians.

10 SLOPE = TAN(THETA)
assigns SLOPE the value of the tangent of
THETA.

TIME$
sets or returns the time, using the format
HH:MM:SS.

TIME$ = " 10:00:00"
sets the time to 10:00 AM.

PRINT TIME$
prints the current time.

TIME$ ON / TIME OFF / TIME STOP
turns on, turns off, or stops the ON TIME$
GOSUB interrupt. (See "BASIC Program Flow.")

10 ON TIME$= "20:00:00" GOSUB 1000
At 8:00 P.M., BASIC goes to the subroutine at
Line 1000.

72

VAL (string expression)
converts string expression to a numeric
representation of the string. If string expression
contains non-numeric characters, VAL returns
only the value of the leading number, if any . VAL
is the inverse of the function STR$.

5 B$ = " 100 .44824
10 A = VAL(B$)

sets A equal to 100.44824.
5 B$ = "no balance"

10 A = VAL(B$)
sets A equal to 0.

5 B$ = "3.00313354E33"
10 A = VAL(B$)

sets A equal to 3.00313354 X 1033
•

V ARPTR (file buffer)
returns the memory address that points to the first
byte of data in file buffer.

LINK= V ARPTR(1)
returns the first address of the data stored in file
buffer 1.

73

VARPTR (variable)
returns a memory address that points to an
individual variable: either a simple variable or a
subscripted variable.

If variable is numeric, this address points to
the actual variable. If variable is string, this
address points to the variable's string descripter.

LINK= V ARPTR(A %)
sets LINK equal to the first address of A% .

LINK= VARPTR(A$(1))
sets LINK equal to the first address of the string
descripter which points to of array element A$(1) .

74

11/ Machine-Code Calls

BASIC includes statements and functions that you
can use to call machine-code routines. These
statement and functions are for technical
applications.

Calling a Machine-Code Routine

BASIC lets you call a Tandy 102 machine-code
routine stored in ROM or your own machine-code
routine.

To call a ROM machine-code routine:

Use the CALL statement to call the routine at the
specified address. For the addresses of the ROM
routines, you need to purchase the Tandy 102
Technical Manual.

To call your own machine-code routine:

1. Use the CLEAR statement to reserve an area in
high memory that BASIC cannot destroy.

2. Insert a machine-code routine into this area of
high memory. You can do this in 2 ways: (a) by
using the BASIC POKE statement to directly
insert the machine-code routine into high memory,
or (b) by using the BASIC CLOADM statement to
load a preassembled machine-code routine into
high memory. (To preassemble a routine, you
need a Model 100 or a Tandy 102 assembler
product.)

75

3. Use the CALL statement to jump to this area
of high memory that contains the machine-code
routine.

4. Return from the machine code routine by using
the following machine-code instruction:

RTS

Passing Values to a Machine-Code Routine

The CALL statement lets you pass two values to a
machine-code routine. The first value must be in
the range of 0-255; you can use this value to pass
a character's code to the routine.

The second value must be in the range of -32768
to 65535; you can use this value to pass the
address of a variable or a file buff er to the
routine. (You can obtain this address by using the
BASIC VARPTR statement.)

Before returning from the routine, you can pass a
value back to BASIC. To do so, insert this value
in the address of a BASIC variable or in the
address of a BASIC file buffer.

(See also, "BASIC Codes," the VARPTR
statement and "BASIC Variable Storage.")

76

12/ BASIC Variable Storage

Integer Variables

BASIC stores integer variables in 2 bytes of
memory using two's complement notation: The
first byte is the least significant byte (LSB); the
second, the most significant byte (MSB).

With two's complement notation, the highest bit
of the MSB is indicates the sign of the number. If
this bit is 1, the number is negative; if this bit is
0, the number is positive.

If the number is negative it is stored as its binary
inverse plus 1. BASIC calculates a number's
inverse by changing all the bits that are 1 's to O's
and all the bits that are O's to l's.

For example, this is how BASIC stores the integer
513:

Byte Binary Decimal Meaning

0 00000001 1
00000010 2 512

This is how BASIC stores the integer -513

Byte Binary Decimal Meaning

0 11111111 255 the binary inverse
of 1 plus I

11111101 253 the binary inverse
of 512

77

Single and Double Precision Variables

BASIC stores single- and double-precision
numbers in 4 bytes (single-precision) or 8 bytes
(double-precision) of memory using floating-point
notation.

With floating point notation, BASIC converts a
number to a mantissa and an exponent. The
mantissa is the significant digits in the number
represented as a decimal fraction. For example,
the mantissa of -51.25 is .5125.

The exponent is whatever power of 10, when
multiplied by the mantissa, will produce the
number's actual value. For example, the exponent
of -51.25 is 2. (.5125 times 10 to the power of 2
equals -51.25) .

The first byte of a single- or double-precision
variable contains the number' s sign (in bit 7) and
exponent (in bits 0-5). The 6th bit of this byte
always contains a 1.

For example, the number -51.25 is a negative
number with an exponent of 2. BASIC uses a
binary 11000010 to store this information.

The remaining bytes contain the variable's
mantissa stored in binary-coded decimal (BCD)
notation. BCD format uses 4 bits to store each
mantissa digit.

78

For example, the first two digits of the mantissa
of -51.25 is 51. BASIC uses binary 01010001 to
store this information. (Binary 0101 represents the
digit 5; 0001 represents the digit 1).

The number -51 .25 is stored as follows:

Byte Binary Decimal Meaning

0 11000010 194 negative number
exponent=2

01010001 81 digits 51

2 00100101 37 digits 25

3 00000000 0 digits 00

String Variables

BASIC uses a 3-byte string descriptor to indicate
where in memory a string is stored. The string
descriptor contains:

Byte Meaning

0 Length of the string
LSB of string address

2 MSB of string address

79

Array Variables

BASIC stores arrays in memory using an array
descriptor , which is immediately followed by each
of the array elements. The array descriptor is in
this format:

Byte

0 and 1

2 and 3

4

5 and 6

7 and 8

Meaning

ASCII code for the array name

Length of the array

Number of dimensions in the array

Number of elements in first
dimension

Number of elements in the second
dimension

BASIC reserves bytes 7 and 8 for the number of
elements in the second dimension, even if the
array has only 1 dimension. If the array has 3 or
more dimensions, each of the next groups of 2
bytes store the number of elements in each
additional dimension.

For example, if the array has 4 dimensions, bytes
9 and 10 contain the number of elements in the
third dimension, and bytes 11 and 12 contain the
number of elements in the fourth dimension.

80

The array descriptor is followed immediately by
each of the array elements. For example, in a
2-dimensional array, Byte 9 contains the first byte
of the first element in the array.

BASIC stores the array elements in the same way
it stores simple variables. For example, in a
2-dimensional integer array, Bytes 9 and 10
contains two's complement notation of the first
element; in a 2-dimensional string array, Bytes
9-11 contain the string descriptor of the first
element.

81

13/ BASIC Codes

These tables list the codes that you can use with
the CHR$ and ASC statements in a BASIC
program. For example, you could use PRINT
CHR$(128) to display a small telephone, PRINT
CHR$(27);"A" to move the cursor up I line, and
PRINT CHR$(ASC("A") + 32) to display the
letter "a".

82

Decimal Hex Binary Printed Keyboard
Character Character

0 00 00000000 <Cm)@

01 00000001 rcm)A

2 02 00000010 rcm)B

3 03 00000011 rcm)C

4 04 00000100 rcm)D

5 05 00000101 CCIB[)E

6 06 00000110 CCIB[) F

7 07 00000111 bell rcm:JG
8 08 00001000 backspace rcm)H

9 09 00001001 tab rcmI) I

10 0A 00001010 line feed CCIB[)J

11 OB 00001011 cursor home rcmI) K

12 oc 00001100 crnIJ L

13 OD 00001101 carriage return !Ilm M

14 OE 00001110 CCIB[) N

15 OF 00001111 rcm)O

16 10 00010000 CCim p

17 11 00010001 XON CCim Q

18 12 00010010 crnI) R

19 13 00010011 XOFF rcm)S

20 14 00010100 rcm)T

21 15 00010101 CCI.mu
22 16 00010110 rcmI) V

23 17 00010111 CCIB[)W

24 18 00011000 rcm)X

25 19 00011001 rcm)Y

26 1A 00011010 EOF CCim z

83

Decimal Hex Binary Printed Keyboard
Character Character

27 18 00011011 rm
28 1C 00011100 ~

29 1D 00011101 ~J

30 1E 00011110 CIJ
31 1F 00011111 m
32 20 00100000 (film!ID

33 21 00100001

34 22 00100010

35 23 00100011 # #

36 24 00100100 $ $

37 25 00100101 % %

38 26 00100110 & &

39 27 00100111

40 28 00101000

41 29 00101001

42 2A 00101010

43 2B 00101011 + +

44 2C 00101100

45 2D 00101101

46 2E 00101110

47 2F 00101111

48 30 00110000 0 0

49 31 00110001 1 1

50 32 00110010 2 2

51 33 00110011 3 3

52 34 00110100 4 4

53 35 00110101 5 5

54 36 00110110 6 6

84

Decimal Hex Binary Printed Keyboard
Character Character

55 37 00110111 7 7

56 38 00111000 8 8

57 39 00111001 9 9

58 3A 00111010

59 3B 00111011

60 3C 00111100 < <

61 3D 00111101

62 3E 00111110 > >

63 3F 00111111 ? ?

64 40 01000000 (a (a

65 41 01000001 A A

66 42 01000010 B B

67 43 01000011 C C

68 44 01000100 D D

69 45 01000101 E E

70 46 01000110 F F

71 47 01000111 G G

72 48 01001000 H H

• For uppercase letters A-Z, press (IHlfI) or ICAP$ LDCKJ Defore pressing
the Keyboard Character.

85

Decimal Hex Binary Printed Keyboard
Character Character

73 49 01001001

74 4A 01001010 J J

75 4B 01001011 K K

76 4C 01001100 L L

77 40 01001101 M M

78 4E 01001110 N N

79 4F 01001111 0 0

80 50 01010000 p p

81 51 01010001 a a
82 52 01010010 R A

83 53 01010011 s s
84 54 01010100 T T

85 55 01010101 u u
86 56 01010110 V V

87 57 01010111 w w
88 58 01011000 X X

89 59 01011001 y y

90 SA 01011010 z z
91 5B 01011011 [

92 SC 01011100 cmi-
93 5D 01011101]

94 SE 01011110

95 SF 01011111

96 60 01100000 \ (DIWH)[

97 61 01100001 a A

• For lowercase letters a-z, be sure (CAPS LOCKJ 1s not pressed "down."

86

Decimal Hex Binary Printed Keyboard
Character Character

98 62 01100010 b B

99 63 01100011 C C

100 64 01100100 d D

101 65 01100101 e E

102 66 01100110 F

103 67 01100111 g G

104 68 01101000 h H

105 69 01101001

106 6A 01101010 J

107 68 01101011 k K

108 6C 01101100 I L

109 6D 01101101 m M

110 6E 01101110 n N

111 6F 01101111 0 0

112 70 01110000 p p

113 71 01110001 q a
114 72 01110010 R

115 73 01110011 s s
116 74 01110100 T

117 75 01110101 u u
118 76 01110110 V V

119 77 01110111 w w
120 78 01111000 X X

121 79 01111001 y y

122 7A 01111010 z z
123 78 01111011 (&8)9

124 7C 01111100 (&RI_

87

Decimal Hex Binary Printed Keyboard
Character Character

125 7D 01111101 (Gftffl) 0

126 7E 01111110 C&Hl]

127 7F 01111111 (DE[)

128 80 10000000 ff' (GBeH)p

129 81 10000001 t CGRffl)m

130 82 10000010 (x (GBeH)f

131 83 10000011 ~ (GBeH) X

132 84 10000100 * ~c

133 85 10000101 -t (GBeH) a

134 86 10000110 • ~h

135 87 10000111 II ~t

136 88 10001000 n ~1

137 89 10001001 V (GBeH) r

138 BA 10001010 * (GBeH)I

139 BB 10001011 I (GBeH) s

140 BC 10001100 (aH)'

141 8D 10001101 :':: (aH) =

142 BE 10001110 I (aH)i

143 BF 10001111 • (&H)e

144 90 10010000 ft (WH)y

145 91 10010001 A (WH)u

146 92 10010010 i (G(lffl) ;

147 93 10010011 I (WH)q

148 94 10010100 t (WH)w

149 95 10010101 ,s' (WH)b

150 96 10010110 ;. (WH)n

151 97 10010111 C/4: (WH).

88

Decimal Hex Binary Printed Keyboard
Character Character

152 98 10011000 t (&H)o

153 99 10011001 ' CRH),

154 9A 10011010 - (RIH)I

155 98 10011011 - (RIH)k

156 9C 10011100 &, (&H)2

157 90 10011101 • (&H)3

158 9E 10011110 v (&H)4

159 9F 10011111 ~ (&H)5

160 AO 10100000 cmm·
161 A1 10100001 a CCDDI)z

162 A2 10100010 c; (ffl) f

163 A3 10100011 £ (GRffl) 8

164 A4 10100100 CCDDI)"

165 A5 10100101 µ (ffl) l
166 A6 10100110 CC1m))

167 A7 10100111 .. (CDm_

168 AS 10101000 t CCDm +
169 A9 10101001 t CCM[)s

170 AA 10101010 13 (CDmR

171 AB 10101011 Iii CCM[)Y

, 172 AC 10101100 ¼ tmmp
173 AD 10101101 ¾ CCMEl;
174 AE 10101110 ½ ~I

175 AF 10101111 en ~o
176 BO 10110000 ¥ (WID7

89

Decimal Hex Binary Printed Keyboard
Character Character

177 B1 10110001 A (COD[) Q

178 B2 10110010 b CCD!mO
179 B3 10110011 0 (ffl) u
180 84 10110100 e (&11)6

181 BS 10110101 CCD!m[
182 B6 10110110 a ccamq
183 B7 10110111 b (COD[) 0

184 B8 10111000 u CCDmu
185 B9 19111001 ~ ccams
186 BA 10111010 T CCDDilT M

187 BB 10111011 e CCD!md
188 BC 10111100 u CCD!m m

189 BD 10111101 e CCDDI) C

190 BE 10111110 (COD[)=

191 BF 10111111 f' CCD!m F

192 co 11000000 a CCD!m 1

193 Cl 11000001 e CCDDI)3

194 C2 11000010 lffiR)B

195 C3 11000011 6 CCDDI)9

196 C4 11000100 G (ffl) 7

197 cs 11000101 (ffl)-

198 C6 11000110 e (ffl)e

199 C7 11000111 (ffi)i

200 ca 11001000 a (ffl) a

201 C9 11001001 (ffl)k

202 CA 11001010 6 cmm1
203 CB 11001011 u immi

90

Decimal Hex Binary Printed Keyboard
Character Character

204 cc 11001100 tm)!

205 CD 11001101 ;; tm)n

206 CE 11001110 a CCDD[)v

207 CF 11001111 6 tm)b

208 DO 11010000 J. tm)X

209 01 11010001 • (ffl)x

210 02 11010010 A CCDD[)W

21t 03 11010011 ~ tm)w

212 D4 11010100 • (ffl)>

213 05 11010101 • (ffl) .

214 D6 11010110 iii tm)N

215 D7 11010111 E ccaDE) D

216 08 11011000 A CCME) A

217 09 11011001 i (ffl)K

218 DA 11011010 6 CCDDE) L

219 DB. 11011011 u (ffl)J

220 DC 11011100 " (fflID?

221 DD 11011101 u CCME) M

222 DE 11011110 E CCME) C

223 OF 11011111 A CCDDE) z
224 ED 11100000 (DltH)Z

225 E1 11100001 • (upperleft) ~!

226 E2 1110001-0 • (upper right) ~(cl

227 E3 11100011 • (lower left) (DRffi) #

228 E4 11100100 • (lower right)(DRffi) $

229 E5 11100101 .. ~%

91

Decimal Hex Binary Printed Keyboard
Character Character

230 E6 11100110 .. CGml;"

231 E7 11100111 (upper) ~Q

232 ES 11101000 (lower) ~w
233 E9 11101001 I !leftl ~E

234 EA 11101010 I (nght) ~A

235 EB 11101011 r ~A

236 EC 11101100 • (ffl)S

237 ED 11101101 .. (ffl)D

238 EE 11101110 • (ffi)F

239 EF 11101111 • (ffl{)X

240 F0 11110000 r rraHl u
241 F1 11110001 CHHJP
242 F2 11110010 7 (ffl{)O

243 F3 11110011 T rraH) I

244 F4 11110100 f- ~J

245 F5 11110101 (ffl):

246 F6 11110110 L ~M

247 F7 11110111 ..J ~>

248 F8 11111000 ...L ~<

249 F9 11111001 --, (ffi)L

250 FA 11111010 + ~K

251 FB 11111011 ,,. (ffl)H

252 FC 11111100 ~ (ffl)T

253 FD 11111101 "llllll ~G

254 FE 11111110 "
(ffi)Y

255 FF 11111111 II (ffl)C

92

Sequence Codes

Decimal Keyboard Printed
Character Character

27,65 (ESCl(A) Move cursor up one line.

27,66 [ESCl(ID Move cursor down one line.

27,67 (ESCl~ Move cursor right one
space.

27,68 (ESCl(Q) Move cursor left one space.

27,69 (ESCl(EJ Clear display.

27,72 [ESC)(BJ Home cursor (moves cursor
to top left corner).

27,73 (ESClCD Answer back

27,74 (ESClQJ Erase to end of screen.

27,75 [ESC)CK) Erase to end of line.

27,76 (ESClW Insert line.

27,77 [ESCJ(M) Delete line.

27,80 (ESC J(EJ Turn cursor on.

27,81 [ESC J(QJ Turn cursor off.

27,84 (ESC)(jJ Set system line.

27,85 (ESC JOI) Reset system line.

27,86 (ESC)CY] Disable video.

27,87 (ESC J(W) Enable video

27,89 (ESCJCY) Move cursor to specified
r,c r,c row/column position.

27,106 [ESC)QJ Clear screen.

27,108 (ESCJO] Erase entire line.

27,112 (ESCl(EJ Enter reverse video mode.

27,113 CT::scJ® Exit reverse video mode.

93

14/ BASIC Error Codes

Code
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23-49
50
51
52
53
54
55
56
57
58
59-~55

Message Meaning
NF NEXT without FOR.
SN Syntax Error.
AG RETURN without GOSUB.
OD Out of Data.
FC Illegal function call.
OV Overflow.
OM Out of Memory.
UL Undefined line.
BS Bad Subscript.
DD Doubly Dimensioned Array.
/0 Division by Zero.
ID Illegal Direct.

TM Type Mismatch.
OS Out of String Space.
LS String Too Long.
ST String Formula Too Complex.
CN Can't Continue.
10 1/0 Error .
NA No RESUME.
AW RESUME Without Error.
UE Undefined Error.
MO Missing Operand.
UE Undefined Error.
IE Internal Error.
BN Bad File Number.
FF File Not Found.
AO Already Open.
EF Input Past End of File.
NM Bad file name.
OS Direct Statement in File.
FL Too many files.
CF File Not Open.
UE Undefined Error.

94

15/ BASIC Sample Programs

Sample Program 1

This program sends the result of a calculation to
another computer through the RS-232 connector.
Before running this program, you need to connect
the two computers with an RS-232 cable as
described in Part 3 of the owner's manual. You
also must set the other computer's communication
parameters to 600 baud, 7-bit word length, odd
parity, and 1 stop bit.

10 'SET ANOTHER COMPUTER TO
RBPSX = 47O1E
20 OPEN "COM:47O1 E" FOR OUTPUT AS I
30 CLS:INPUT "ENTER Q/TY";A
40 PRINT:PRINT
50 INPUT "ENTER PRICE";B
60 PRINT:PRINT
70 PRINT "AMOUNT= ";A *B
80 PRINT#!, A*B
90 PRINT:PRINT
100 PRINT "NOW SENDING IS COMPLETED ! "
110 INPUT "NEXT ITEM YIN ";C$
120 IF C$ = "N" OR C$ = "n" THEN
CLOSE:END ELSE 30

95

Sample Program 2

This program renumbers a BASIC program saved
in ASCII format. First, save the program you want
to renumber using the SAVE command with the
"A" option. Then run the program and respond
to its prompts:
• old line number-Enter the first line number to

renumber.
• new line number-Enter the first new line

number to use.
• step-Enter the increment between lines
• new file name-Enter a filename for the

renumbered program that has 6 or fewer
characters.

• output device (1 :CAS 2:RAM). Enter "l" to
save the renumbered program to cassette tape.
(By choosing the cassette option, you can
renumber large programs.) Enter "2" to save
the renumbered program in RAM.

10 CLEAR 1000,MAXRAM:MAXFILES=2:DEFINT
1-L:IL= l:IS=0
110 CLS:PRINT"Renumber Program Ver 2.0":
ON ERROR GOTO 800
120 PRINT:INPUT"File Name = ";F$:IF
INSTR(F$,". ") = 0 THEN F$ = F$ +".DO"
130 OPEN F$ FOR INPUT AS I
140 INPUT"New Line Number = ";NL
150 IF NL<0 OR NL>65535 THEN 140
160 INPUT"Old Line Number = ";OL
170 IF OL<0 OR OL>65535 THEN 160

96

180 INPUT"Step = ";ST
190 IF ST<0 OR ST>65535 THEN 180
200 INPUT"New File Name = ";FN$
210 INPUT"Output Device (0:CAS 1 :RAM)" ;DY$
220 l=YAL(DY$)-1:IF I THEN DY$="CAS:"
ELSE DY$=''''
240 PRINT"PASS 1"
250 LINE INPUT#l ,A$:IF EOF(l) THEN 300
260 M = Y AL(A$):IF IS THEN 280
270 IF OL= <M THEN OL=M:IS=IL
280 IF M <OL AND M> = NL THEN 740
290 IL =IL+ 1 :GOTO 250
300 CLOSE#l :IF IS= 0 THEN 730
310 OPEN F$ FOR INPUT AS 1
320 DIM M(IL):PRINT"PASS 2"
330 FOR I= 1 TO IL:LINE INPUT#! ,A$
340 M(I) = Y AL(A$):NEXT
350 CLOSE#l :OPEN F$ FOR INPUT AS 1
360 PRINT"PASS 3":IF DY$="" THEN 390
370 INPUT"Cassette OK (Y /N)";A$
380 IF INSTR("Yy" ,A$)= 0 THEN 370
390 OPEN DY$+ FN$ FOR OUTPUT AS 2
400 FOR I= 1 TO IL:LINE INPUT#l,A$
410 J = INSTR(A$," "):A$= MID$(A$,J)
420 Kl = LEN(A$):FOR K = 1 TO Kl
430 IF MID$(A$,K,l)< >CHR$(34) THEN 470
440 HM= INSTR(K + 1,A$,CHR$(34)):IFHM =0
OR HM= Kl THEN K = Kl :GOTO 560
450 K=HM+ 1
470 IF MID$(A$,K,1) = ""' OR
MID$(A$,K,3) = "REM" THEN K = Kl :GOTO 560

97

480 IF MID$(A$,K,4) = "DATA" THEN
K=K+3 GOTO 750
490 IF MID$(A$,K,4) = "GOTO" THEN
K=K+3:GOTO 610
500 IF MID$(A$,K,5) = "GOSUB" THEN
K=K+4:GOTO 610
510 IF MID$(A$,K,3) = "RUN" THEN
K = K + 2:GOTO 710
520 B$ = MID$(A$,K,4):IF B$ = "THEN" OR
B$="ELSE" THEN K=K+3:GOTO 710
530 IF MID$(A$,K,6) = "RESUME" THEN
K=K+5:GOTO 710
540 IF MID$(A$,K,7) = "RESTORE" THEN
K = K + 6:GOTO 710
560 NEXT K
570 B$ = MID$(STR$((1- IS)*ST + NL),2)
580 IF I <IS THEN B$ = MID$ (STR$(M(l)),2)
590 A$= B$ + A$:PRINT#2,A$:PRINT"*";
600 NEXT I:BEEP:BEEP:PRINT:
PRINT"Renumber Ended !!":END
610 LF=0:JF=O:IF K=Kl THEN
Ml =0:JF = 1:K =K + 1:A$ =A$+" ":GOTO 630
615 IF MID$(A$,K+l,l)=" "THEN
K=K+ 1:GOTO 615
620 M 1 = V AL(MID$(A$,K + 1))
625 IF Ml =0 AND MID$(A$,K+ 1,1)<>"0"
THEN JF= 1
630 FOR II= 1 TO IL
640 IF Ml= M(II) THEN 660
650 NEXT:GOTO 720

98

660 C$ = MID$(STR$((11-IS)*ST + NL),2)
670 IF II <IS THEN C$ = MID$(STR$(M(II)),2)
680 A$= LEFT$(A$,K) + C$ + MID$(A$,K + LEN
(STR$(Ml))-JF)
690 K = K + LEN(C$):IF LF THEN 560
700 IF MID$(A$,K+ 1,1)="," THEN
K=K+ l:JF=0:GOTO 615 ELSE 560
710 LF = 1 :JF = 0:IF VAL(MID$(A$,K + 1)) = 0
THEN 560 ELSE 615
720 PRINT"Undefined";
730 BEEP:PRINT:"Line Number Error
in";M(l):END
740 BEEP:PRINT"Illegal Function Call Error
!!":END
750 HL = INSTR(K,A$, ":"):HM= INSTR(K,A$,
CHR$(34))
760 IF HL=0 THEN K=Kl:GOTO 560 ELSE IF
HL<HM OR HM =0 THEN K ,.= HL:GOTO 560
ELSE K=HM
780 HM= INSTR(K + 1,A$,CHR$(34)):IF HM= 0
OR HM=Kl THEN K=Kl:GOTO 560
790 K=HM+ 1:GOTO 750
800 IF ERL= 130 AND ERR= 52 THEN PRINT
"FILE NOT FOUND":BEEP:FOR N = 1 TO
500:NEXT:RESUME 120
810 IF ERL= 130 AND ERR= 55 THEN
PRINT"ONL Y ASCII FORMAT PROGRAM
CAN BE":PRINT"RENUMBERED, SAVE
PROGRAM WITH ";CHR$(34);" .DO";
CHR$(34):PRINT "EXTENSION AND TRY
AGAIN.":END
820 RESUME 0

99

Sample Program 3

This program lets you rearrange data stored in a
.DO file which has a consistent format. For
example, arrange first names, last names,
addresses, and phone numbers in columns. You
can also enter information in any order and let the
program sort it for you in various formats.

When you load the program, the screen displays a
list of all existing files. After you enter the name
of the file you want to sort, the screen displays
two lines which ref er to the column numbering
and the first record of the .DO file to be sorted.
Answer the prompt "Begin at position" by typing
the column number where the sort begins. Answer
the prompt "End at position" by typing the
number which includes all characters used in the
sort.

Return to the menu to examine the sorted file.

1000 ' This program sorts a data
1010 ' file stored in RAM . the file must
1020 ' be a data file , stored in ASCII
1030 ' format. The program uses a
1040 ' Shell-Metzner sorting algorithm.
1050 '
1060 CLS
1070 CLEAR 2000
1080 FILES
1090 '
1100 ' Input the filename and verify

100

1110 ' it has a .DO extension
1120 '
1130 A$ = "Which file to sort: " : GOSUB 2000
1140 INPUT F$
1150 IF MID$(F$,LEN(F$)-2,1) < > "." THEN
F$ = F$ + ".DO"
1170 OPEN F$ FOR INPUT AS 1
1180 '
1190 ' Print the first record of the
1200 ' file and determine the begin
1210 ' and end position of the sort
1220 ' field, and whether the field
1230 ' is numeric (F = 1) or character
1240 ' (F=0)
1250'
1260 LINE INPUT #l ,Z$
1270 CLS
1280 PRINT"--.--1--.--2--.
--3--.--4'';
1290 PRINT Z$
1300 A$ = "Begin at position: " : GOSUB 2000
1310 INPUT B
1315 IF B =0 THEN 1300
1320 A$ = "End at position: " : GOSUB 2000
1330 INPUT E
1370 N = 1
1380'
1390 ' Input the remainder of the file
1400 ' to determine the size for the
1410 ' DIM statement.
1420'

101

1430 N = N + 1
1440 LINE INPUT #1,Z$
1450 IF EOF(l) THEN GOTO 1470
1460 GOTO 1430
1470 CLOSE
1480 DIM D$(N)
1490'
1500 ' Read in the data from the file
1510 '
1520 '
1530'
1540 OPEN F$ FOR INPUT AS 1
1550 FOR I= 1 TO N
1560 LINE INPUT #1,D$(1)
1570 NEXT I
1580 CLOSE 1
1600'
1610 GOSUB 3000 'Call the sort routine
1620 '
1630 ' Write the sorted file out to RAM
1640'
1645 KILL F$
1650 OPEN F$ FOR OUTPUT AS 1
1660 FOR I = 1 TO N
1670 PRINT #1,D$(1)
1680 NEXT I
1690 CLOSE
1700 '
1710 END:'CHANGE BACK TO MENU
2000'
2010 ' Subroutine for printing prompts

102

2020'
2030 PRINT @240, STRING$(40,32);
2040 PRINT @240, A$;
2050 RETURN
3000'
3010 ' Sorting subroutine
3020'
3030 Z5 = N
3040 Z5 = INT(Z5/2)
3050 IF Z5 = 0 THEN 3190
3060 Z2 = 1: Z3 = N-Z5
3070 Zl = Z2
3080 Z4 = Z 1 + Z5
3100 IF (MID$(D$(Zl),B,(E-B)+ 1)) > (MID$(D$
(Z4),B,(E-B) + 1)) THEN 3160 ELSE 3120
3120 Z6$ = D$(Zl):D$(Zl) = D$(Z4):D$(Z4) = Z6$
3130 Zl = Zl-Z5
3140 IF Zl < 1 THEN 3160
3150 GOTO 3080
3160 Z2 = Z2 + 1
3170 IF Z2 > Z3 THEN 3040
3180 GOTO 3070
3190 RETURN

103

Sample Program 4

This program automatically calls Dow Jones News
Retrieval Service, logs you on, requests stock
quotes, stores the stock quotes in a file named
QUOTE.DO, logs you off, and disconnects from
the telephone.

You need to edit Line 20 by replacing telephone
with your own Tymnet telephone number and
password with your own Dow Jones password.
(See the TELCOM manual for information on
Tymnet and Dow Jones .) You also need to edit
line 5010 to contain the NYSE ticker symbols of
the stocks for which you want quotes .

Lines 50, 60, and 270 call machine-language ROM
routines which are contained at memory addresses
21200, 21293, and 21179. Line 50 calls a routine
that lifts the telephone. Line 60 calls a routine
that autodials. Line 270 calls a routine that
disconnects from the telephone. The Tandy 102
Technical Manual lists the addresses of all the
ROM routines .

5 MAXFILES = 3
10 ST$= CHR$(19)
20 PH$='telephone< = =A?pDOWl;;?WDJNSA
M?Ppassword AM>"
30 M = V ARPTR(PH$)
40 AD= PEEK(M + 1) + (PEEK(M + 2)*256)
50 CALL 21200
60 CALL 21293,0,AD

104

70 CLS
80 OPEN "MDM:7E1D" FOR INPUT AS 1
90 OPEN "MDM:7E1D" FOR OUTPUT AS 2
100 OPEN "QUOTE.DO" FOR APPEND AS 3
110 Z$=INPUT$(1,l)
120 IFZ$< >ST$THEN 110
130 PRINT #3,DATE$;" ";TIME$
140 PRINT "STARTING QUOTES REQUEST"
150 READ N
160 FOR I= 1 TO N
170 READ Q$
180 PRINT #2,Q$
190 GOSUB 4000
200 PRINT @41,I;" REQUEST COMPLETE"
210 NEXT I
220 PRINT "SIGNING OFF"
230 ST$ = CHR$(7)
240 PRINT #2, "DISC"
250 GOSUB 4000
260 CLOSE
270 CALL 21179
280 END
4000 Z$ = INPUT$(1, 1)
4010 IF Z$ = ST$ THEN RETURN
4020 PRINT #3,Z$;
4030 GOTO 4000
5000 DATA 3
5010 DATA ",TAN", ",CIMN", "#BLHZ"

105

RADIO SHACK

A Division of Tandy Corporation
U.S.A.:Fort Worth, Texas 76102
CANADA:Barrie, Ontario UM 4W5

TANDY CORPORATION
AUSTRALIA
91 Kurrajong Avenue
Mount Druitt, N.S.W. 2770

BELGIUM
Pare Iridustriel De N aninne
5140 Naninne (Namur)

FRANCE
Centre Commercial des 3 Fontaines

B.P.147
95022 Cergy Pontoise Cedex

U.K.
Bilston Road Wednesbury
West Midlands WSlO 7JN

1A6 KTI02 n•06 Printed in Japan

	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0000.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0001.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0002.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0003.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0004.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0005.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0006.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0007.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0008.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0009.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0010.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0011.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0012.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0013.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0014.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0015.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0016.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0017.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0018.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0019.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0020.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0021.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0022.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0023.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0024.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0025.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0026.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0027.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0028.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0029.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0030.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0031.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0032.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0033.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0034.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0035.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0036.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0037.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0038.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0039.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0040.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0041.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0042.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0043.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0044.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0045.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0046.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0047.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0048.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0049.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0050.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0051.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0052.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0053.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0054.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0055.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0056.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0057.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0058.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0059.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0060.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0061.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0062.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0063.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0064.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0065.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0066.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0067.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0068.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0069.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0070.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0071.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0072.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0073.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0074.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0075.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0076.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0077.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0078.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0079.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0080.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0081.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0082.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0083.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0084.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0085.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0086.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0087.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0088.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0089.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0090.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0091.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0092.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0093.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0094.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0095.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0096.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0097.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0098.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0099.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0100.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0101.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0102.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0103.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0104.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0105.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0106.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0107.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0108.tif
	Tandy102 Application and BASIC Ref Guide 26-3803_irfanview_extract_0109.tif

